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SUMMARY

O Data ordering by model-based hardness
values results in a maximum of 1.38%
improvement on finetuned TinyLlama
performance on SNLIZI,

o We introduce S-Loss, a technique to scale
loss by hardness values during training to
mimic data ordering in a distributed setting,
matching/exceeding 1.68% improvement.

RESEARCH QUESTIONS

o How can we leverage data hardness
metrics to improve model performance”?

o How can we adapt curriculum learning for
a distributed setting?

CURRICULUM LEARNINGIS3; 5]

Ordering finetuning data by hardness showed that
ascending difficulty outperforms descending difficulty
for all hardness calculations.
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DATA HARDNESS METRICS

DATASET CARTOGRAPHY!4]

A model-based tool to characterize and diagnose
datasets by evaluating various metrics during training.

The two prominent metrics are:

o Confidence: The model’s confidence in the true class.

o Variability: The variability of the confidence across
epochs.

N-GRAM PERPLEXITY

An even linear interpolation of unigram, bigram, and
trigram perplexity on the concatenated inputs.

FUTURE WORK

O It Is Important to see if these results generalize
to different datasets and different tasks. For
example, with a CausalLM on GSM8Kk.

O Explore and perform ablation studies on various
loss scaling functions and hardness metrics.

o Compare other finetuning optimizations to S-
Loss results to gauge performance
Improvements.

T Indicates equal contribution

[1] TinyLlama https://arxiv.org/abs/2401.02385
[2] SNLI Dataset https://arxiv.org/pdf/1508.05326v1.pdf
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Results after finetuning TinyLlama with S-Loss on the SNLI for 2 epochs on 4 GPUs with a per GPU
batch size of 8, a learning rate of 4e-4, and AdamW.

BASELINE CONFIDENCE

TEST ACCURACY 72.36% 74.04%

NORMALIZED
CONFIDENCE

74.04%

NORMALIZED NORMALIZED
VARIABILITY
PERPLEXITY VARIABILITY
73.56% 73.64% 73.88%
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S-LoSS

A custom scaling function was created to scale the fine-
tuning Cross-Entropy loss by a coefficient. The coefficient
to scale by is defined by the hardness of the sample
(hormalized) and the current training step (normalized by

the total number of steps).
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[3] Curriculum Learning for Natural Language Understanding https://
aclanthology.org/2020.acl-main.542.pdf
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